翻訳と辞書
Words near each other
・ De Broekmolen, Broeksterwoude
・ De Broglie–Bohm theory
・ De Broodfabriek
・ De Broqueville government in exile
・ De Brouckère metro station
・ De brug
・ De Bruijn
・ De Bruijn graph
・ De Bruijn index
・ De Bruijn notation
・ De Bruijn sequence
・ De Bruijn torus
・ De Bruijn's theorem
・ De Bruijn–Erdős theorem
・ De Bruijn–Erdős theorem (graph theory)
De Bruijn–Erdős theorem (incidence geometry)
・ De Bruijn–Newman constant
・ De Bruin
・ De bruut
・ De Bruyn
・ De Bruyne
・ De Bruyne Snark
・ De Bruyère C 1
・ De Buddy's
・ De Buitenmolen, Zevenaar
・ De Bullemolen, Lekkum
・ De Bunker
・ De Bunsen Committee
・ De Burgh
・ De Burgh Fitzpatrick Persse


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Bruijn–Erdős theorem (incidence geometry) : ウィキペディア英語版
De Bruijn–Erdős theorem (incidence geometry)

In incidence geometry, the De Bruijn–Erdős theorem, originally published by , states a lower bound on the number of lines determined by ''n'' points in a projective plane. By duality, this is also a bound on the number of intersection points determined by a configuration of lines.
Although the proof given by De Bruijn and Erdős is combinatorial, De Bruijn and Erdős noted in their paper that the analogous (Euclidean) result is a consequence of the Sylvester–Gallai theorem, by an induction on the number of points.
==Statement of the theorem==

Let ''P'' be a configuration of ''n'' points in a projective plane, not all on a line. Let ''t'' be the number of lines determined by ''P''. Then,
* ''t'' ≥ ''n'', and
* if ''t'' = ''n'', any two lines have exactly one point of ''P'' in common. In this case, ''P'' is either a projective plane or ''P'' is a ''near pencil'', meaning that exactly ''n'' - 1 of the points are collinear.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Bruijn–Erdős theorem (incidence geometry)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.